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Geodetic observations at many active plate margins reveal relatively steady aseismic motion during the 
time between major earthquakes. We model the aseismic motion by the relative motion between several 
blocks that suffer frictional resistance in the upper crust. Frictional drag is represented by uniform 
dislocation on a fault surface. We assume that friction occurs only on the upper "brittle zone" of each 
block boundary and that frictionless sliding occurs below this zone. Using a Bayesian inversion pro- 
cedure, we invert geodetic data to determine the parameters of the block and dislocation model. Parame- 
ters to be estimated include the two horizontal components of velocity for each block and the dislocation 
rate, dip angle, slip angle, and width of each rectangular fault patch. For Hollister we assume five blocks 
and nine rectangular fault patches. Rates of length change on 92 lines observed by trilateration make up 
the data. Triangulation, leveling, very long baseline interferometry, satellite ranging, and global posi- 
tioning system data can also be easily included in our model. Our inversion procedure uses prior 
estimates of all block and fault parameters based on geological and seismological data. The block 
parameters are estimated from geological observations of fault displacement rates, while the widths of the 
fault patches are estimated from earthquake hypocentral depths. We choose prior estimates of the 
dislocation rate to match observed creep rates. The estimated block motion is well resolved by the 
geodetic data and agrees well with the geological estimates. This suggests that the block motion is steady 
on time scales from 10 years to 1 m.y. The net motion across the San Andreas-Calaveras fault system is 
38 _+ 3 mm/yr oriented S38øE. Thus some additional displacement, possibly offshore, is needed to match 
the rate of 56 mm/yr predicted by plate tectonic models. The depth of the transition from frictional to 
free sliding varies considerably, from 0.4 km on the southern Calaveras to 11 km on the central San 
Andreas fault. Two segments of the San Andreas, north of 36050 ' and south of 36ø40 ', have the greatest 
potential for moderate to large earthquakes. 

1. INTRODUCTION 

Since 1971, the U.S. Geological Survey (USGS) has fre- 
quently repeated line length measurements on trilateration 
networks which span the San Andreas fault system in Califor- 
nia [Savage et al., 1979, 1981]. The trilateration data contain 
important information about the accumulation and release of 
tectonic stress on the plate boundary. 

In most cases, trilateration data have been analyzed under 
the assumption of uniform strain in space or uniform slip on 
one or two fault planes. However, these assumptions seem too 
simple to interpret actual crustal deformation in a fault zone. 
Moreover, for precise analysis, a systematic, robust method is 
necessary, since the data are contaminated by noise. 

In this study we first introduce a dislocation model for as- 
eismic crustal deformation near the plate boundary. Second, 
we develop a method for inverting trilateration data on the 
basis of a new algorithm for nonlinear inversion. Finally, the 
method is applied to the trilateration data for the USGS Hol- 
lister network. 

Savage et al. [1979] and Thatcher [1979] have both ana- 
lyzed geodetic data for the Hollister area in terms of simple 
dislocation models. By using few model parameters they have 
ignored spatial variations in stress accumulation rate that we 
find to be significant. We compare our specific results with 
their results in section 6. 

We are able to include more model parameters, and thus 
obtain a more realistic model, because we use a new nonlinear 
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inversion procedure employing prior estimates of all parame- 
ters. This Bayesian inversion procedure, summarized briefly 
below, is described in complete detail by Jackson and 
Matsu'ura [1985]. 

2. A DISLOCATION MODEL FOR 

ASEISMIC DEFORMATION 

Consider the stress accumulation and release caused by the 
relative motions of several elastic blocks with friction between 

them. We assume that each block boundary may be divided 
into an upper "brittle" zone and a lower "ductile" zone. The 
simple case of two blocks separated by a vertical boundary is 
illustrated in Figure 1. We suppose that the shallower part of 
the boundary is locked in an interseismic stage, while the 
deeper part is completely free. The blocks are subject to a 
uniform relative motion parallel to the boundary. Then, as a 
result of the relative motion, tectonic stress accumulates in the 
shallower locked part. When the tectonic stress on the bound- 
ary reaches an ultimate value, rupture occurs so as to release 
the accumulated stress. Tectonic stress then begins to accumu- 
late again for some future event. 

In the interseismic stage, crustal deformation near the block 
boundary may be regarded as the sum of a rigid block motion 
and the effect of the locked part. As is seen from Figure 1, the 
effect of the locked part is equivalent to that of a negative 
dislocation on the boundary. Here, the negative sign is taken 
so that the dislocation corresponds to the slip deficit, presum- 
ably to be paid back in some forthcoming earthquake. Then 
we may interpret the aseismic crustal deformation as a result 
of the rigid block motion and the negative dislocation on the 
boundary. 
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Top View 

1 

Cross Section 

Aseismic = Block - Dislocation 
displacement motion 

Fig. 1. Model for aseismic crustal deformation at a block bound- 
ary. The aseismic displacement (left) is the difference between pure 
block motion (center) and the displacement due to the slip deficit, 
represented by a dislocation in the upper locked part (right). This 
diagram shows a special case: the dislocation rate equals the relative 
block motion, so there is no surface creep. 

More generally, the upper brittle zone may be divided into 
several rectangular patches, each having its own length, width, 
dip, and strike. We assume the slip to be spatially uniform 
within each rectangular patch and within the lower zone 
bounding each pair of contiguous blocks. We then infer the 
average slip rate on each of the patches, and on the lower 
boundaries, from the average rates of line length change be- 
tween pairs of monuments on the earth's surface. 

Our conceptual model is similar to the dislocation loop 
model of Savage et al. [1979] for the upper brittle zone. For 
the lower, freely slipping zone, they assumed a patch extend- 
ing to 1000 km depth, effectively infinite compared to the 
horizontal extent of the geodetic network. They assumed, as 
we do, that the slip is uniform within each patch. We define 
the slip on the lower part of each boundary to be the relative 
displacement of the two blocks in contact there. Because fric- 
tion near the earth's surface generally impedes block motion, 
we allow for a slip deficit on the upper fault patches. We 
model this deficit by a uniform dislocation on each patch. The 
net slip is then the difference between relative block motion 
and the dislocation motion on the patch. If the near-surface 
patches were locked (no slip), then the dislocation motion 
would precisely equal the block motion, and the two would 
cancel. We chose this representation for the following reasons: 

1. It is mathematically more convenient than the dis- 
location loop representation. 

2. It predicts that monuments far from the block bound- 
aries would move with their respective plates. We believe this 
model is physically more realistic than the dislocation loop 
model, which predicts no displacement for such monuments. 

3. The dislocation motion on the fault patches has a useful 
physical interpretation: it is the slip deficit on the fault 
patches, and the rate of stress accumulation is proportional to 
it. 

Our block and dislocation model will be mathematically 
equivalent to the dislocation loop model of Savage et al. 
[1979] when the block boundaries are vertical, when the 
bottom depth of their lower loop is infinite, when our relative 
block motion is parallel to the boundary, and when our dis- 
location motion is purely horizontal. These conditions are 
nearly satisfied in the case of Hollister. Both models predict 
discontinuous slip rates, infinite strains, and "sources and 
sinks" of matter along the edges of the patches. These con- 

ditions could be viewed as unphysical if the models were inter- 
preted literally. However, we do not pretend that the slip is 
actually uniform within each patch; rather, we presume that 
the slip varies continuously over the fault and the "uniform" 
slip on each patch is just the average value on that part of the 
fault surface. 

Our block and dislocation model does have some features 

absent from the dislocation loop model. The most important 
one is that our model allows dip-slip motion on the block 
boundaries and a variable dip angle to be determined by the 
data. In fact, there must be some dip-slip motion if there are 
more than three independent blocks, unless all block bound- 
aries are parallel to one another. Our model correctly ac- 
counts for the resulting block motion far from the boundary, 
but neither our model nor the dislocation loop model correct- 
ly describes the resulting elastic effects near the boundary. 

2.1. Line Length Change 

We take a Cartesian coordinate system (X, Y) as a frame of 
reference. Let the coordinates of the ith trilateration station pi 

be(X i, yi) at t=t0 and(Xi+ Wx i, Y•+ Wr i) at t=t0+At. 
Here, Wi= (Wx •, Wr •) indicates the total displacement vector 
of P• in the time interval from to to to + At. Then, denoting 
the line length between Pi and pt at t = to by lo o, the change 
of the line length during the interval from to to to + At is 
given by 

AIij = sin OiJ(Wx j - Wx •) + cos O•J(wr j - Wr i) (1) 

with 

sin 0 ij = (X j - X•)/lo ø cos 0 •j = (YJ - Y•)/lo ø (2) 

under the condition, 

IW i-- Wq << lo •j (3) 

In actual cases the line length l0 ø is of the order of several 
kilometers, while the magnitude of displacement vectors IW'l 
and IWq are much less than 1 m, so the above condition is 
always satisfied. 

2.2. Aseismic Crustal Deformation 

In our model the aseismic crustal deformation is regarded 
as a result of the rigid block motion and the negative dis- 
location on the locked parts of block boundaries. Then the 
total displacement vector W•= (Wx •, Wr i) at the ith station 
can be written as 

wi= V i- U i (4) 

where V/= (Vx i, Vr i) is the displacement vector of a block in 
which the ith station is located and U •= (Ux i, Ur •) is the 
displacement vector at the ith station due to the dislocation 
on the locked parts. 

Now we consider the simplest case in which a system of 
interacting plates is modeled by two blocks and one fault 
plane (locked part). In such a case the displacement vector due 
to the block motion, which is assumed to be uniform in each 
block, is 

V i-- V(X •-X i, Y- ri; Vx(1), Vr(1), Vx(2), Vr(2)) (5) 

with 

V(X, Y)= V(1) if X lies within block 1 
(6) 

V(X, Y)- V(2) if X lies within block 2 

where V(1)= [Vx(1), Vr(1)] and V(2)= [Vx(2), Vr(2)] are con- 
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stant vectors. On the other hand, the displacement vector due 
to uniform slip on a rectangular fault plane is uniquely deter- 
mined by a set of nine independent parameters as shown in 
Figure 2; that is, 

U i-- U(X -- X i, Y -- yi; D, 6, 2, W, d, a x, a r, b x, br) (7) 

Here, D is the magnitude of dislocation, 6 is a dip angle; 2 is a 
slip angle, W is a fault width, d is a depth to the upper fault 
edge, (ax, at) are the coordinates of the upper left fault corner, 
and (bx, br) are the coordinates of the upper right fault corner. 

It is reasonable to assume that the locked part extends to 
the earth's surface. Moreover, in most cases, we know the fault 
trace and its extent from geological observations. Then, in 
place of (7), we have 

U(X, Y)= U(X, Y; D, 6, 2, W) (8) 

In a similar way, we can treat more complicated cases. For 
example, when the system consists of p blocks and q fault 
patches, (6) is replaced by 

¾(X, Y)- ¾(k) if X lies within block k (9) 

(k= l, ..-, p) 

and (8) by 
q 

U(X, Y) = •', Uø')(X, Y' D ø'), 6 ø'), 2 ø'), W øø) (10) 

2.3. Forward Model and Partial Derivatives 

From (1) and (4) we may express the line length change Al u 
as a function of model parameters: 

At u =fU(Vx(1), Vr(1), Vx(2), Vr(2), D, 6, 2, W) (11) 

The functional form off ø is given by 

fij = sin OiJ[Vx]i j •t_ COS OiJ[V¾]i j 

- sin OU[Ux]? - cos Oø[Ur]? (12) 

Here, it is noted that Vx is a function of Vx(1) and Vx(2), Vr is a 
function of Vr(1) and Vr(2), and Ux and Ur are functions of D, 
•, •, and W. The symbol [ ]? indicates that 

[F(X)]? • F(X J) - F(X') (13) 

Partial derivatives off u with respect to the model parame- 
ters, which are needed to construct a coefficient matrix in the 
next section, are calculated as follows: 

For Vx(1), Vr(1), Vx(2), and Vr(2), 

[ OVx(k) - sin 0 u OVx(k)J, k = 1, 2 
Ofu r OVr ]• (14) • V•(k) - cos 0 u k = 1, 2 L•V•(k)J• 

with 

a Vx(k) Vdk) 
-1 if X lies within block k 

Vx(k) Vdk) 
- 0 otherwise 

For D, 6, 2, and W, denoting any of these parameters by •, 

(15) 

r3f U - _sin OiJ [c3Ux] j - [c3Ur] j c• L 0s/i cos OU L c• li (16) 
We take a Cartesian coordinate system (x, y, z) fixed to the 

y 

Uy 

(x, Y) "• U 

W 
D 

Fig. 2. Fault geometry and notation. D is the dislocation mag- 
nitude, 6 is the dip angle, 2 is the slip angle, W is the width, d is the 
depth to the upper fault edge, and u x and uy are the x and y compo- 
nent of the surface displacement in the coordinate system fixed to the 
fault. 

fault as shown in Figure 2. The displacement components u•, 
and uy in this coordinate system are related to the displace- 
ment components Ux and Ur in the reference coordinate 
system (X, Y) as 

with 

U x(X, Y)= sin ½ Ux(X, y)- cos ½ %,(x, y) 

Ur(X, Y) = cos 4) ux(x, Y) + sin 4) uy(x, y) 
(17) 

•Ux 

c• U r 

•U x •Uy 
- sin •b • - cos •b • 

c•u•, c•uy 
-cos•b•+sin•b &z 

Matsu'ura [1977] gives analytical expressions for the surface 
displacement field, and its partial derivatives with respect to 
fault parameters, of a rectangular fault. Okada [1985] gives an 
excellent and comprehensive review of computing methods for 
surface deformations due to faulting. 

2.4. Length Change Rates 

If the process of strain accumulation is considered to be 
uniform in time, instead of(ll), we have 

I iJ -- =fu(12x(1), l)'r(1), l;'x(2), l;'r(2),/J, 6, 2, W) (20) 
At 

Here, I u is the rate of line length change; 9(1) and 9(2) are the 
velocity vectors of the block 1 and block 2, respectively; and/J 
is the rate of dislocation on the fault. 

In reality, the strain rate is not constant in time. We assume 
that steady strain accumulation dominates but that episodic 
slip motion, especially on the upper parts of block boundaries, 
will punctuate the strain accumulation. The average rate of 

(19) 

x = sin 42 (X -- ax) + cos 42 (Y -- at) 
(18) 

y = --cos 42 (X -- ax) + sin qb (Y - at) 

where 4) is the angle of fault strike measured clockwise from 
the Y axis. Then, for the partial derivatives of displacement 
with respect to the fault parameters we have 
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line length change over a long enough time interval will reflect 
the secular block velocities and fault slip rates, while residual 
length variations give a measure of the episodic effects (mixed, 
of course, with experimental errors). Thus we shall use (20), 
with average rates of line length change as the basic data, and 
interpret the arguments of the right-hand side as averages over 
the relevant time interval. We shall use data sets covering 
slightly different time intervals to test the hypothesis that the 
process of strain accumulation is constant in time. Of course, 
we also want to know whether the average block velocities 
deduced from just a few years of geodetic observation are at 
all similar to the geologically observed block velocities, which 
are averages over many thousands of years. 

3. NONLINEAR INVERSION PROCEDURE 

Our problem is to estimate simultaneously the fault param- 
eters and the block velocities from the trilateration data. In 

most cases, the problem is ill-conditioned because the stations 
are sparse and the data are noisy. Line length rates are nearly 
linear functions of the block velocities and dislocation rates, 
but they are nonlinear functions of fault width and the dip and 
slip angles. 

clackson [1979] demonstrated that an ill-conditioned linear 
inverse problem can be reduced to a well-conditioned problem 
by incorporating sufficient prior data. Then the problem may 
be solved by using the classical least squares procedure. The 
use of prior information about model parameters is essential, 
since any solution depends inevitably on the initial guess of 
model parameters when the problem is underdetermined 
[Matsu'ura and Hirata, 1982]. Tarantola and Valette [1982] 
have extended Jackson's approach to nonlinear cases by defin- 
ing the least squares problem before linearization. 

Recently, Jackson and Matsu'ura [1985] developed a new 
algorithm of nonlinear inversion from a Bayesian point of 
view. In this section we describe it briefly. 

3.1. Fundamental Equations 

Let us consider a set of observational equations in vector 
form: 

yO = f(x) + e (21) 

where yO is an n vector of observed data, x is an m vector of 
model parameters, f is an n vector of nonlinear functions of x, 
and e is an n vector of random errors. The random errors e 

are supposed to be Gaussian with zero mean and a covariance 
matrix E. 

In geophysical problems we have some information about 
model parameters before the collection of observed data. We 
express the prior information in the form of 

xø= x + d (22) 

where x ø is an m vector of prior estimates of x, and d is an m 
vector of random errors. The random errors d are also sup- 
posed to be Gaussian with zero mean and a covariance matrix 
D. The prior estimates of model parameters will generally be 
correlated, so that the covariance matrix D will have off- 
diagonal elements. This case arises especially when the prior 
estimates result from inversion of a different data set, indepen- 
dent of the observations used here. Sometimes the prior infor- 
mation may arise from physical constraints on the parameters, 
and the uncertainty in this information may be represented by 
a diagonal covariance matrix. 

According to Bayes' theorem, the conditional probability 

density of x given yO is 

p(xly ø) = c. exp [-«s(x)] 

with 

where 

and 

s(x) = erE- le +dtD- • d 

(23) 

(24) 

e = yO _ f(x) (25) 

d- x ø- x (26) 

Tl•e superscript "t" indicates the transpose of the correspond- 
ing matrix or column vector. The first term of (24) represents 
the weighted sum of squared residuals for the observations 
and the second term represents the same quantity for the prior 
data. The inverse covariance matrices E- • and D -• weight 
the observations and prior data, respectively, so that uncertain 
data get little weight. 

The maximum likelihood estimate of x is given by the 
vector/t which maximizes the conditional probability density 
p(xlyø), and the maximum of p(xly ø) is realized by minimizing 
the quadratic form s(x). For any solution which minimizes 
s(x), the variation of s(x) with respect to x must vanish. Thus 
we obtain fundamental equations to be solved for 

AtE - •e + D- •d = 0 (27) 

where A represents an n x m matrix defined by 

A = grad f(x)lx= • (28) 

whose elements are A o = (•f//•Xj)x= • 

3.2. Solution to the Fundamental Equations 

The nonlinear equations in (27) may be solved by using an 
iterative procedure. For an arbitrary fixed point xn a simple 
algorithm of iterative search for the solution is given by 

Xn+ • = Xn + 0•n(AntE - •An + D-•)-•rn 0 < an < 1 (29) 

Ante - X[yO _ f(x0] + D-•(x ø -- xn) (30) 

An = grad f(x)lx= x• (31) 

with 

and 

Here, czn is a factor to adjust the length of the correction 
vector. For mildly nonlinear problems the factor an is safely 
set to 1. If we have no prior information about the parameters, 
then D-l= O, and (29) reduces to the standard Gauss- 
Newton method for nonlinear least squares problems. How- 
ever, in most geophysical problems we do have useful prior 
information, even if it may not be adequate for our needs. 

From (27) it is clear that r n tends to a null vector as xn 
approaches the solution • if f(x) are continuous functions of x. 
We can thus use the norm of rn to judge the convergence of 
the iterative process. In practice, denoting a certain threshold 
by 7, the solution :i is defined as 

:i = xn if IIr•112 < • (32) 

3.3. Evaluation of Estimation Errors 
For the final estimates :i we can evaluate the covariance of 

estimation errors directly from the fundamental equations (27) 
under the assumption of linearity for f(x) at x = :i. The 
asymptotic co variance matrix of the estimation error is given 
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by 

C = (AtE-1A + D-i) -1 (33) 

where the matrix A is the same as that in (28). If the functions 
f(x) are nearly linear within some reasonable confidence 
region about •, then (33) will give a good approximation to a 
true co variance matrix. 

Jackson and Matsu'ura [1985] show that the posterior vari- 
ance of any parameter obtained from C must be less than or 
equal to the prior variance obtained from D. Assuming that E 
and D truly represent the errors in the observed data and 
prior estimates, then the expected value of the quantity s(x) in 
(24) is equal to n, the number of observed data (there are 
n + m total data, and m parameters, so there are n degrees of 
freedom in the residuals). Often the realized value of s differs 
significantly from its expected value, implying that the data 
uncertainties have been either underestimated or overesti- 

mated. The assumed covariance matrices E and D are only 
estimates of the true covariances, so they are themselves sub- 
ject to error. E should describe all of the random effects on 
measured line lengths that are not explicitely modeled: such 
things as random errors in line length measurements, errors in 
the refraction corrections, setup errors, small blunders, monu- 
ment instability, soil motion, displacements on neglected 
faults, etc. As a first approximation, we estimate the variance 
of length rates for each line from the linearity of measured 
length with respect to time. To the extent that any of the error 
sources may be correlated with time, they will escape detec- 
tion. Similarly, D should describe the errors in our prior esti- 
mates, including errors in the geological and seismological 
data, temporal variations in displacement rate, neglect of 
smaller faults, etc. To allow for errors in the preliminary co- 
variance estimates, we use a modified form of (33): 

C' = a2(AtE - •A + D- •)- • (34) 

where a 2 is the variance inflation factor, 

a 2 = s/n (35) 

With this modification the posterior uncertainty of a given 
parameter, or linear combination of parameters, may exceed 
the prior uncertainty by the factor a, at most. 

3.4. Resolution of Parameter Estimates 

Under the assumption of linearity for f(x) at x = • we can 
also define the asymptotic resolution matrix as 

R = I - CD- • (36) 

R is the usual resolution matrix [e.g., Jackson, 1972] relating 
the estimate • to the general solution x. Jackson and 
Matsu'ura [1985] show that the diagonal elements of the reso- 
lution matrix may be interpreted as the fraction of infor- 
mation provided by the observations hbout each of the pa- 
rameters. The complement of the resolution matrix gives the 
fraction provided by the prior data. Thus, when the diagonal 
elements of the resolution matrix are near 1.0, the parameter 
estimates are insensitive to the prior data. 

In the special case that D is diagonal, then the diagonal 
elements of the resolution matrix are given by 

Rii = 1 -- Cii/Dii (37) 

The resolution of any parameter is simply one minus the ratio 
of its posterior variance to its prior variance. For well- 
resolved parameters the posterior variance is much smaller 
than the prior variance, and the resolution is near one. For 

poorly resolved parameters the posterior variance almost 
equals the prior variance, and the resolution is nearly zero. 

4. ANALYSIS OF STRAIN ACCUMULATION 

NEAR HOLLISTER 

In the preceding sections we developed an inverse method 
for analyzing trilateration data. As an example, we apply this 
method to observed data for the Hollister network which 

spans the junction of the Calaveras and San Andreas faults in 
central California. The location map is given in Figure 3. 

4.1. Trilateration Data 

We used data for the USGS Hollister network, kindly pro- 
vided by J. Savage and his coworkers at USGS in Menlo 
Park. The network has been surveyed approximately annually 
since 1971. Figure 4 shows the locations of the trilateration 
monuments, the lines used in our analysis, and the surface 
traces of the larger mapped faults in the region. Our three- 
letter station codes consist of the first three consonants of the 

station names used by Savage et al. [1979] with the following 
exceptions: HLR, Hollair; HLS, Hollis; and OAK, Oak. 

We analyzed three different versions of the basic data set to 
test the effect of various assumptions. The three data sets are 
labeled by the latest year for which data are included and the 
number of lines used. Data consist of average rates of line 
length change, estimated by linear regression of the line length 
on time. Standard deviations of the length change rates are 
based on the residuals to this linear regression. In our mod- 
eling, we weighted each datum by its inverse standard devi- 
ation. The data sets are as follows. 

Data set 78/69 consists of average length change rates from 
1971 through 1978 for 69 lines. These data are identical to 
those reported and interpreted by Savage et al. [1979] except 
that 16 lines involving stations HLS and PRR have been given 
zero weight. We gave them zero weight because the true lo- 
cation of the Calaveras fault with respect to these stations is 
doubtful and the relative locations may strongly affect the 
results for such a shallow fault. By including the questionable 
lines with zero weight we provide that the parameter estimates 
are independent of these data, but theoretical rates and re- 
siduals are still computed for these lines. Except for these 16 
lines with zero weight, this data set is identical with data set 
78/85, described next. 

Data set 78/85 consists of average length change rates from 
1971 through 1978 for 85 lines. The data set is identical to that 
reported by Savage et al. [1979]. The 16 lines to HLS and 
P RR are included with no special treatment. 

Data set 83/92 consists of average length change rates from 
1971 through 1983 for the 85 lines used above and the seven 
lines to station BLS (Bolsarm2). Baselines from LNT were not 
observed after 1978, and baselines from BLS were not ob- 
served before that year. This change in station coverage could 
introduce a spurious spatial variation in deformation if there 
were a temporal change in displacement rate about 1978. 
However, there is no evidence for any large change in rate, 
and our error estimates are adequate to cover any likely vari- 
ations. 

4.2. Fault Geometry 

We assumed five blocks separated by nine idealized fault 
segments as shown in Figure 5. The block names were chosen 
to be mnemonics for east, west, north, central, and "extra." 
Figure 5 also contains some final results to the discussed 
below. Figures 4 and 5 share the same scale. Obviously, we 
had to take some liberties with the mapped fault traces, es- 
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Fig. 3. Location map showing principal active faults in central California, modified from Ellsworth et al. [1981]. 

Average creep rates in millimeters per year appear in parentheses following fault name code. The creep data are from Herd 
[1979], Burford and Harsh [1980], and Ellsworth et al. [1981]. Fault codes are as follows: NSAN, northern San Andreas; 
CSAN, central San Andreas; SSAN, southern San Andreas; NCAL, northern Calaveras; SCAL, southern Calaveras; 
SARG, Sargent; SNGR, San Gregorio; HOSG, Hosgri; GRVL, Green Valley; CONC, Concord; CLSN, Calaveras-Sunol; 
RDCR, Rodgers Creek; HAYW, Hayward. 

pecially with the southern Calaveras and Sargent faults (SCAL 
and SSAR). Our results will not depend strongly on minor 
changes in fault location for those faults which are locked to a 
depth of several kilometers, but changes in fault location 
could be important for faults with a small locking depth or 
with substantial creep. It was this concern that led us to make 
separate calculations for data set 78/69, giving special treat- 
ment to stations near SCAL. The boundaries between NSAN, 
CSAN, and SSAN were chosen at places where the mapped 
fault trace changes direction. The northern ends of NSAN, 
NCAL, and NSAR are chosen somewhat arbitrarily, as is the 
southern end of SSAN. These faults have been assigned arbi- 
trary lengths of 100 km, 100 km, 100 km and 200 km, respec- 
tively. The values chosen will have little effect on the results 
because the ends of these faults are so far away from any of 
the monuments used in this work. 

4.3. Primary Parameters 

Parameters in our model include the eastward and north- 

ward velocities of the five blocks and four parameters (dis- 
location rate, dip angle, slip angle, and fault width) for each of 
nine fault segments. We have 46 parameters to be determined 
by the data. We effectively fixed the western block as the 
origin of coordinates by including prior data as described 
below. This choice is quite arbitrary, as only the relative block 
velocities have any meaning in this analysis. 

4.4. Derived Parameters 

We also computed estimates for several derived parameters: 

Block slip rate 

s• = [9(j)- 9(0] ß t (38) 
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Fig. 4. Hollister trilateration network, modified from Savage et al. 
[1979]. Mapped faults are shown by thick lines, dashed where the 
fault trace in uncertain. 

Block convergence rate 

ct, = [•(j)- •(i)] ß n (39) 

Fault slip rate 

s s = -/5 cos 2 (40) 
Fault convergence rate 

sin 2 cos 6 (41) 
Creep rate 

rc - sb- s s (42) 

In these expressions, 9(0 and 9(j) represent the velocity vec- 
tors of the two blocks separated by the fault in question, t is a 
unit vector parallel to the fault trace (reckoned positive for 
right-lateral slip), n is a unit vector normal to the fault trace 
(reckoned positive for convergence), and dot product repre- 
sents a scalar product. The block slip rate and block conver- 
gence rate are relevant to the lower, freely slipping part of the 
block boundary. The fault slip rate is the strike-slip compo- 
nent of the dislocation rate; a positive value corresponds to 
right-lateral slip deficit. The fault convergence rate is the pro- 
jection of the dip-slip component of the dislocation rate on the 
earth's surface. A positive value corresponds to a convergence 
deficit. The creep rate is the net horizontal slip on the shallow 
part of the block boundary (the fault patch) after correcting 
the block slip rate for the negative contribution of the fault 
slip rate. Taking our model literally, one should expect the 
creep rate to match the observed creep on major faults. We do 
not take the model quite so literally, since the assumptions of 
the model are not valid near the fault edges. 

The pattern of displacements has implications for stress ac- 
cumulation, recurrence interval, and maximum seismic dis- 
placement on each of the fault segments. Roughly, we expect 

that the rate of stress accumulation should be proportional to 
the dislocation rate/5 and inversely proportional to the fault 
width W. The recurrence interval for the largest earthquakes 
should be inversely proportional to the rate of stress accumu- 
lation, and the seismic displacement in such events should be 
the cumulative elastic displacement between events (that is, 
the product of the recurrence interval and the dislocation 
rate). 

As Weertman [1965] pointed out, the stress increment on a 
long vertical strike-slip fault can in principle be deduced from 
the resulting surface displacements. However, in practice, radi- 
cally different stress distributions lead to nearly equa! surface 
displacements. Our block and dislocation model represents 
rather well the average displacement at depth and near the 
earth's surface. However, the rate of stress accumulation de- 
pends on how sharp the transition is from the brittle zone to 
the ductile zone, and our model fails to represent this transi- 
tion. For computational convenience we assume abrupt dis- 
placement discontinuities at the edges of each fault segment; 
these discontinuities cause nasty singularities in the theoretical 
stress. In nature the transitions from one fault to another, and 
from each fault to the freely slipping zone below it, must be 
smooth enough to avoid such singularities. 

To relate stress and displacement on the fault surface, we 
shall adopt results for a slightly more realistic model, knowing 
that it also may be quite imperfect in some details. Knopoff 
[1958] showed that a uniform stress drop "S" on an infinitely 
long, vertical strike-slip surface fault of width "a" leads to the 
displacement offset of the form 

2aS 
u(z) = [1 --(z/a)2] 1/2 0 < z < a (43) 

121030 ' 121015 ' 

O N Hollister Network 

W(Fixed) 

0 5 10km 
I • I 

20 40mm/yr 
: : : .• 
prior 

20 40mm/yr 

final 

Fig. 5. Map showing block boundaries, with prior and final esti- 
mates of block velocities and dislocation rates. Thin arrows show 

prior estimates, thick arrows final estimates. Inner paired half arrows 
on each fault segment show prior estimates of fault slip rate, while 
outer half arrows show final estimates. Note that fault slip rate is the 
slip deficit (see Figure 1) and not the creep rate nor the relative block 
velocity. Final estimates are based on data set 83/92. 
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TABLE 1. Block Velocities (Data Set 83/92) 

Magni- Direc- 
East, Res, North, Res, tude, tion, 

Block Model mm/yr % mm/yr % mm/yr deg 

W prior 0 _+ 0 -.- 0 _+ 0 --. 0 ..- 
final 0 -+ 0 0 0 -+ 0 0 0 --- 

E prior 25 _+ 5 .... 23 _+ 5 ... 34 S48E 
final 23 + 2 93 --30 + 2 94 38 S38E 

C prior 22 _ 5 .... 16_ 5 '.. 28 S53E 
final 19 _+ 3 92 -17 __+ 2 94 26 S49E 

N prior 22 -+ 5 .... 16 __+ 5 -.. 28 S53E 
final 18 _+ 3 91 - 18 -+ 3 92 26 S45E 

X prior 22 + 5 .... 16 + 5 .-- 28 S53E 
final 22 _+ 10 0 -16 _+ 10 0 28 S53E 

"Res" is resolution, expressed as percentage of maximum possible. 

where z is the depth from the earth's surface and # is the 
rigidity of the crust, assumed to be 40,000 MPa (400 kbar). 
The maximum offset occurs at z - 0; 

Uo = 2aS/# (44) 

In terms of the maximum offset the stress drop is 

S = #Uo/2a (45) 

on the displaced part of the fault. 
If the true displacemet obeyed (43), our estimate of the dis- 

location magnitude D would be close to u o (the offset at the 
earth's surface) because the dislocation magnitude is well re- 
solved if there are stations near the fault. We would estimate a 

fault width "W" somewhat less than "a": 

W = •a/4 (46) 

represents a "strain-averaged" depth such that the integral of 
displacement offset with respect to depth is the same for our 
model and for the Knopoff model. In terms of our model 
parameters the stress drop on the fault is 

S = re#D/8 W (47) 

Differentiating with respect to time, we have 

• = rc#l•/8W (48) 

which gives the rate of stress accumulation on the fault in 
terms of the estimated quantities • and W. We compute this 
quantity routinely, as well as its asymptotic variance 

Var (,½) = (re#/8 W)2[Var (b) - 2(b/W) Cov (b, W) 

+ (D/W) 2 Var (W)] (49) 

The uncertainty reported below is the standard deviation or 
square root of the variance. 

Assuming a periodic model for stress accumulation and re- 
lease, we can calculate the recurrence interval of the largest 
earthquakes in terms of their stress drop and the stress accu- 
mulation rate. This recurrence time is t = So/ll, or in terms of 
thc primary estimated parameters: 

t = 8So w/•101 (50) 

where So is the seismic stress drop. We calculate the recur- 
rence time t assuming that So = 10 MPa (100 bars). Of course, 
there is plenty of doubt about the proper value for So and 
about the validity of the simple periodic earthquake model. 
Nevertheless, the reported recurrence time may be used to 
compare the relative behavior of different fault segments. 

Pushing the model yet further, we can calculate the amount 
of slip D s expected for periodic large earthquakes. It is simply 
the cumulative slip deficit between large events, D s --1}t. 
Equivalently, it is the amount of slip required to produce a 
stress increment equal to the assumed stress drop. In terms of 
the estimated parameters we have 

D s = sgn (15)(8SoW/•z#) (51) 

A negative value of /5, and hence Ds, implies an eventual 
left-lateral earthquake. 

4.5. Prior Estimates 

Table 1 shows prior estimates of the block parameters, 
along with final estimates to be discussed below. We base our 
prior estimates of the block parameters on the neotectonic 
studies of Herd [1979], summarized by Ellsworth et al. [1981]. 
We choose relative block velocities such that there is very 
little convergence (or divergence) at the block boundaries be- 
cause there is no geologic evidence for significant motion 
normal to any of the faults. We fix the origin of coordinates 

TABLE 2. Primary Fault Parameters (Data Set 83/92) 

Fault Model 
O, Res, W, Res, 5, Res, 2, Res, 

mm/yr % km % deg % deg % 

NSAN 

CSAN 

SSAN 

SCAL 

CCAL 

NCAL 

NSAR 

SSAR 

BUSH 

prior 
final 

prior 
final 

prior 
final 

prior 
final 

prior 
final 

prior 
final 

prior 
final 

prior 
final 

prior 
final 

27+5 
25+4 

22+5 
16+4 

9+5 
20+ 8* 

7+5 
20_+ 5* 

--3_+5 
-6_+3 
-3_+5 
--7+3 
--3+5 

--8+2 

--3+5 

5+7 

--3+5 
--21 _+ 6* 

73 74 

84 61 79 

22 16 3 

74 1 O0 66 

89 21 19 

89 12 19 

93 26 44 

42 88 8 

10+5 

9_+4 
5_+3 

11_+4' 
5_+3 

11 +5* 

10+_5 
0+1 
5_+3 
6-+5 
5_+3 

12 -+ 5* 
10+5 

15+_8 
10+5 

2_+3 
10 _+ 10 
3+_2 

85_+ 10 
95 _+ 12 
80_+ 10 
79+9 

85 _+ 10 
93 + 19 

95_+ 10 
108+ 11 

90_+ lO 
83___ 17 
90_+ lO 

111 +_ 17' 
80_+ lO 
42 +_ 14' 
80+ 10 
63 + 19 

90+ 10 

59 _+ 15' 67 99 40 

180+ 10 

177 _+ 11 
180 _+ 10 
154 + 10' 

180-+ 10 
175 -+ 19 
180_+ 10 
201 + 6* 

180-+ 10 
191 _+ 15 
180_+ 10 
173 q- 17 
180_+ 10 
206 -+ 17' 
180 + 10 

181 _+ 19 
180 _ 10 
178 _+ 12 

"Res" is resolution, expressed as percentage of maximum possible. 
*Final estimates that differ from prior estimates by more than 2 prior standard deviations. 

72 

91 

38 

19 

25 

58 
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TABLE 3. Derived Parameters (Data Set 83/92) 

Block 
Block Conver- 

Slip, gence, 
Fault Model mm/yr mm/yr 

Fault Recur- 

Fault Conver- Creep Stress rence Seismic 
Slip, gence, Rate, Rate, Time, Slip, 

mm/yr mm/yr mm/yr kPa/yr years m 

NSAN prior 27+5 --3+5 27+5 0+0 
final 26+3 0q-1 25 q-4 0-+-1 

CSAN prior 28 q-5 0+5 22+5 0+1 
final 25+3 2q- 1 15+4 1+ 1 

SSAN prior 34 q-5 0q-5 9+5 0+0 
final 37 q-3 7+ 1 20+9 0+ 1 

SCAL prior 7q-7 1 q-7 7+5 0q-0 
final 13 q-2 3+ 1 18+4 2q-2 

CCAL prior 7q-7 -1 +7 -3+5 0q-0 
final 

NCAL prior 
final 

NSAR prior 
final 

SSAR prior 
final 

BUSH prior 
final 

13q-10 4ñ10 --6ñ3 0ñ0 
7q-7 --1ñ7 -3ñ5 0ñ0 

13+3 --1+1 --7+3 0+1 

0q-7 0ñ7 -3ñ5 0ñ0 
0q-2 2ñ2 --7ñ2 3ñ2 
0q-7 0ñ7 --3ñ5 0q-0 
2q-10 -2q-10 5q-7 0ñ1 
0q-7 0q-7 -3ñ5 0ñ0 
4q-10 1ñ10 -21ñ6 0ñ2 

Oñ7 43ñ22 
0ñ6 43ñ19 
6ñ7 68ñ43 

11ñ5 25ñ6 
26+7 28+22 

17ñ9 31ñ22 
0q-9 12q-9 

--5ñ5 688ñ1147 
10q-9 -9ñ15 
19+11 -15+15 

10ñ9 --9ñ15 
20ñ4 -9q-6 

3ñ9 --6ñ9 
7q-4 --6q-6 
3ñ9 -6ñ9 

-3q-13 52q-185 
3ñ9 --6ñ9 

25ñ11 -117q-93 

230 ñ 123 6.4 ñ 3.2 
230 q- 97 5.8 q- 2.6 
143 ñ 91 3.2 ñ 1.9 
415 ñ 120 6.8 ñ 2.2 
370 + 308 3.2 + 1.9 

334 ñ 243 6.7 ñ 3.4 
895 q- 772 6.4 +_ 3.2 

13 ñ 23 0.3 ñ 0.4 
1135 ñ 2140 -3.2 ____ 1.9 
623ñ587 --4.0ñ3.3 

1135 ñ 2140 -3.2 q- 1.9 
1047+629 -7.7+3.5 

2121 ___+ 3690 -6.4 q- 3.2 
1297 q- 801 --9.8 q- 5.3 
2121 ñ 3690 -6.4 ñ 3.2 

191 q- 687 1.0 q- 2.1 
2121 ñ 4125 --6.4 ñ 6.4 

84 q- 68 --1.8 ñ 1.0 

on the western block W by setting its velocity to 0.0 __ 0.01 
mm/yr. The prior estimates for block E imply a motion of 34 
mm/yr in the direction S48øE. We choose a prior uncertainty 
of 5 mm/yr in both the east and north directions, so that most 
published estimates for this region fall within two standard 
deviations of our prior estimates. According to our prior esti- 
mates, blocks N, C, and X all move at the same rate; this 
value is fixed at 28 mm/yr in the direction S53øE with respect 
to block W by the requirement that the absolute convergence 
be small. 

According to the global plate model of Minster and Jordan 
[1978] the relative motion of the North American plate with 
respect to the Pacific plate in central California would be 
about 56 mm/yr in the direction S35øE. Their model is based 
on rates of seafloor spreading, transform fault azimuths, and 
earthquake slip vectors. The relative plate velocity provides an 
upper limit to block motion in the Hollister area. Hall [1981] 
showed that average right-lateral motion on the San Simeon- 
Hosgri fault zone probably equalled 10-15 mm/yr during the 
last 3 m.y. Presumably, comparable rates of motion have oc- 
curred on the San Gregorio fault system or on other offshore 
faults west of the Hollister network. Some displacement may 
also occur east of the network, but the low seismicity there 
suggests very limited displacement. 

Table 2 shows prior estimates of the fault parameters, along 
with final estimates to be discussed below. We estimate the 

dislocation rates to be the difference between the relative 

block motion and the observed creep rate. Average creep rates 
have been reported by Burford and Harsh [1980], Ellsworth et 
al. [1981], and Schulz et al. [1982]. We assume compromise 
creep values as follows' 0 mm/yr for NSAN, 6 mm/yr for 
CSAN, 26 mm/yr for SSAN, 0 mm/yr for SCAL, 10 mm/yr for 
CCAL and NCAL, 3 mm/yr for NSAR and SSAR, and 0 
mm/yr for BUSH. For data set 83/92 we supply one ad- 
ditional prior datum that is not shown in Table 2. We set the 
creep rate on the northern San Andreas fault equal to 0 +_ 1.0 
mm/yr. Without this prior datum the best fitting model would 
have a physically unreasonable negative creep rate. The other 
parameters (dip angle 6, slip angle 4, and fault width W) are 
estimated from focal mechanisms of regional earthquakes 
[Bolt et al., 1968] and distributions of microearthquakes in 
this area [Eaton et al., 1970]. These studies show that 

throughout the region the fault dip is nearly vertical, and most 
events have right-lateral strike-slip focal mechanisms. The 
strike directions agree with the orientation of the major fault 
traces. Since the lower bound of brittle seismicity is about 15 
km in the Hollister area, the depth of the locked part may be 
less than 15 km. 

Prior values of the derived parameters are shown in Table 
3. The block slip rate and the block convergence rate depend 
only on the relative block velocities. For the prior model the 
block slip rate is greatest on the San Andreas fault, quite 
modest on all segments of the Calaveras, and near zero every- 
where else. The fault slip rates are equal to the dislocation 
rates in the prior model because the slip angle was assumed to 
be 180 ø (right-lateral strike slip) for all faults. Some of the fault 
slip rates are negative, implying a left-lateral slip deficit, be- 
cause the observed creep rate exceeds the block slip rate for 
these faults. 

5. RESULTS 

5.1. Quality of Fit 

Table 4 summarizes the level of agreement between the 
model and the data for each data set. Both the prior model 
and the appropriate final model are compared against each 
data set. The top two lines give the trace of the resolution 
matrix and the percentage of information provided by the 
trilateration observations. Resolution for the prior model is 
zero by definition. The resolution is best for data set 83/92. 
However, no data set provides as much as 50% resolution. 
Clearly, many features of each final model depend strongly on 
the prior estimates. Specific resolution estimates for each pa- 
rameter will be discussed below. The next three rows of Table 

4 describe the fit of the models to the prior data; rows 6-8 
describe the fit to the trilateration data; and the last three 
rows describe the fit to the combined trilateration and prior 
data. Within each group, the top row gives the dimensionless 
sum of squared residuals, standardized by the appropriate co- 
variance matrix. The next row gives the number of degrees of 
freedom "df" in the data after fitting. The expected value of 
the sum of squared residuals is just the df. The quantity "rms" 
is the square root of the ratio of the two quantities above. It is 
probably the best index of quality of fit, being about 1.0 if the 
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TABLE 4. Quality of Fit 

Data Set 

78/69 78/85 83/92 

Prior Final Prior Final Prior Final 
Model Model Model Model Model Model 

r 0 18 0 21 0 24 

Res, % 0 39 0 45 0 48 
dtD- x d 0 68 0 66 0 113 
df (prior) 0 18 0 21 0 25 
rms (prior) ... 1.9 ... 1.8 ... 2.1 
etE-•e 1049 82 1459 133 3218 234 

df (obs) 69 51 85 64 92 68 
rms (obs) 3.9 1.3 4.1 1.4 5.9 1.9 
s 1049 150 1459 199 3218 347 

df (all) 69 69 85 85 93 93 
rms (all) 3.9 1.5 4.1 1.5 5.9 1.9 

The r is the trace of resolution matrix; Res - lOOt/m, where m is 
the number of adjustable parameters (46); dtD-ld, etE-le, and s are 
defined as in equations (24)-(26); dr(prior) = p + r - m, where p is the 
number of prior data; df (obs)= n- r, where n is the number of 
observed data; dr(all) = n + p - m. 

model fits the data as expected, less than 1.0 for a better fit, 
and so on. 

It is apparent from Table 4 that the rms residual is greater 
than one for all cases. Thus the uncertainties in the data have 

been underestimated by a factor of about 2, or the model is 
not completely correct. Of course, every model is deficient in 
some way, and ours neglects several effects including those 
listed in section 3.3. The prior model does not fit any of the 
trilateration data sets very well. For each data set the final 
model reduces the sum of squared residuals by an order of 
magnitude compared to the prior model. Comparing results 
for data sets 78/69 and 78/85, we see that the additional trila- 
teration data in the latter one can be fitted reasonably well 
without violating the prior observations; rms (obs) and rms 
(prior) are about the same for both data sets. The additional 
trilateration data in data set 83/92 are harder to fit; the rms 
residuals to both the prior and observed data increase sub- 
stantially compared to data sets 78/69 and 78/85. 

5.2. Summary of Results for All Data Sets 

Figure 6 gives a simple representation of the right-lateral 
slip rate versus depth for each fault according to each of the 
data sets. The rate shown for shallow depth is the creep rate, 
and for greater depth it is the block slip rate, with the transi- 
tion occurring at a depth nearly equal to the fault width. A 
negative creep rate implies left-lateral creep. If the creep rate 
exceeds the block slip rate, the implication is that right-lateral 
shear stress has been reduced during the observation period 
or, equivalently, that left-lateral shear stress has increased. 

The most important inference to be drawn from Figure 6 is 
that the block slip rate varies greatly from fault to fault, but 
this rate does not depend much on which data set is used. For 
every data set the block slip rate is greatest on the fault SSAN, 
followed by NSAN and CSAN in that order. The final esti- 
mates of block slip rates are generally close to the prior esti- 
mates, except for the three segments of the Calaveras fault, 
where the prior estimate was too low, and for the poorly 
resolved Busch fault. 

Estimates for the creep rate are not as stable as those for the 
block slip rate. We see large variability in creep rate for the 
faults SSAN, NCAL, and SSAR. The estimated fault width is 
also variable, especially on NSAN and SSAN. However, the 

southern Calaveras fault, SCAL, is always very shallow (ef- 
fectively zero for data set 78/69). 

Figure 6 reveals a few embarrassing features that we do not 
believe geophysically reasonable. One is the negative creep 
rate estimated for the SCAL fault by all data sets that include 
the lines to stations HLS and PRR. However, this feature is 
poorly resolved and not statistically significant; we interpret 
this value to mean "effectively zero." Another quirk is the 
apparent right-lateral block motion and creep along the 
BUSH fault, which suffered a left-lateral earthquake in 1974 
[Savage et al., 1976]. Neither the block slip rate nor the creep 
rate is well resolved or statistically significant. What is clear 
about the BUSH fault is that it plays only a bit part in the 
drama of central California tectonics. The same is true of 

NSAR and SSAR; their primary influence is to increase the 
uncertainty of the other estimates. Fortunately, we can include 
them easily enough in our models, and the damage that they 
cause is limited by the prior estimates of their activity. By 
including them in the model we can demonstrate, rather than 
just assume, their lack of geodetic influence. 

5.3. Detailed Results for Data Set 83/92 

Final estimates for the most complete data set, 83/92, are 
summarized graphically in Figure 5. Please note that the 
paired arrows on each fault in Figure 5 represent the dis- 
location rate (that is, the slip deficit), not the block slip rate 
nor the creep rate. Numerical values for the block velocities 
are given in Table 1, while Tables 2 and 3 list the estimates for 
the primary and derived fault parameters, respectively. 

An important conclusion from Figure 5 is that the final 
estimates of block velocity agree extremely well with the prior 
estimates. The only significant change is for block E; here the 
vector difference between the final and prior velocities has a 
magnitude of about 7 mm/yr. The resolution of the velocity 
estimates is very high (over 90%; see Table 1) for all blocks 
except W and X. Block W is not resolved simply because it is 
fixed as the reference block, and block X has no monuments 
on it. The high resolution for blocks E, C, and N means that 
their velocities are determined almost entirely by the trilatera- 
tion data, with little sensitivity to the prior estimates. Because 
the prior data are based on geological data, our result implies 
that the geodetic data are not only consistent with geologic 
data but also lead independently to the same answer. Remark- 
ably, the average block motion over the last decade is close to 
the average rate for many thousands of years, within the esti- 
mation errors of a few millimeters per year. This suggests that 
the block motion is driven by some relentless engine that cares 
little about earthquakes or other episodic annoyances at the 
earth's surface. 

The final model has the E block moving at 38 mm/yr in the 
direction S38øE with respect to the W block. The final velocity 
vectors all point a bit more southward than the prior esti- 
mates, implying a small amount of block convergence. 

The estimated dislocation rates (or slip deficits) do not agree 
well with the prior estimates. The largest slip deficit occurs on 
fault NSAN, while SSAN, SCAL, and BUSH also have sub- 
stantial dislocation rates. The final values for these faults are 
more than double the prior estimates. 

Table 2 gives more detailed results for the fault parameters 
estimated from data set 83/92. An important conclusion is that 
the fault width varies considerably from place to place, rang- 
ing from less than 1 km on SCAL to 15 km on NSAR. The 
fault width affects the computed line length rates in a highly 
nonlinear way, especially for fault width less than 5 km, so the 
final uncertainty and resolution estimates should not be taken 
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Fig. 6. Estimated displacement rate versus depth on each of nine fault segments for the prior model and for final 

models based on three different data sets. "Depth" is measured downdip in the fault plane, so that the transition from 
shallow to deep slip rate occurs at depth W. The displacement rate at zero depth is the creep rate; displacement rate at 20 
km depth is the relative block velocity; and the difference is the horizontal component of the dislocation rate. 



12,672 MATSU'URA ET AL.: DISLOCATION MODEL FOR HOLLISTER 

too seriously in these cases. Nevertheless, SCAL, SSAR, and 
BUSH must be very shallow. Fault width resolution exceeds 
50% for five faults: NSAN, CSAN, SCAL, SSAR, and BUSH. 
The last four achieve this distinction because they are blessed 
with stations both near to and far from the fault trace, so that 
shallow and deep slip can be distinguished. Resolution of fault 
width on NSAN is at first surprising because it is not so 
blessed. However, the theoretical displacement pattern for a 
rectangular fault includes relatively large displacements near 
the corners, and the pattern of these displacements responds 
strongly to the fault depth. Thus monuments HWY, HLT, 
MRS, and SRG are all sensitive to the fault width of NSAN. 

As explained in section 3.3, the standard deviations of the 
final estimates may be greater than the prior uncertainties. 
This occurs because we reestimate the uncertainties of all data 

based on the sum of squared residuals, which is greater than 
expected. The minimum value of s in (24) for this data set is 
347, while its expected value is 93. The final uncertainties are 
thus larger by a factor of (347/93) •/2 - 1.9 than they would be 
if we used only the prior uncertainties for the data and initial 
estimates. 

Final estimates that differ from the prior estimates by more 
than two prior standard deviations we call "surprises," and we 
label them with asterisks in Table 2. There are 12 such sur- 

prises out of 36 fault parameters, clearly indicating that we 
have underestimated the errors in the prior model. As shown 
in section 5.1, we also underestimated observational errors by 
about the same factor. Some of the most significant surprises 
are for SSAN, where the dislocation rate and fault width both 
doubled, and for NCAL, where the dip angle changed con- 
siderably and the fault width doubled. 

The stress related parameters •, t, and D• (Table 3) are 
controlled largely by the fault width W and the dislocation 
rate D. The stress accumulation rate • is highest for those 
faults with a large dislocation rate and small fault width. Fault 
SCAL has by far the highest stress accumulation rate by virtue 
of its small width. However, its uncertainty is also very large. 
Only the northern and central San Andreas have estimated 
stress accumulation rates exceeding two standard deviations. 
The recurrence time is inversely proportional to the stress 
accumulation rate; it is greatest for NSAR, NCAL, and 
CCAL. Clearly the amounts of seismic slip must be taken with 
a grain of salt, since we assumed a 10-MPa stress drop on the 
entire fault patch, and its uncertainty is quite large. However, 
the large seismic slip estimates should remind us that any fault 
locked to a depth of 10 km or so may be capable of rather 
large earthquakes after a few hundred years of stress accumu- 
lation. Fault SCAL is clearly different from the others; be- 
cause of its relatively high dislocation rate and small fault 
width, it should have frequent but never very large events. 

A measure of the long-term seismic risk of a fault segment is 
the accumulation rate of "aseismic moment," which is pro- 
portional to the product of the slip deficit, the fault width, and 
the length of the fault segment. By this criterion the most 
dangerous fault is the northern San Andreas, followed by the 
southern and central San Andreas. Note that in spite of its 
large creep rate, the southern San Andreas still has a large slip 
deficit. The northern Calaveras and the northern Sargent 
faults have moderately high accumulation rates of aseismic 
moment with negative sign, which means that the right-lateral 
shear stress is decreasing. A slightly unrealistic prior estimate 
may cause the negative stress rate on NCAL and NSAR, al- 
though the 1979 Coyote Lake earthquake could have released 
more stress than has accumulated on NCAL. 

5.4. Correlated Estimation Errors 

The correlation between estimates of any pair of parameters 
may be determined by their correlation coefficient, 

Pij •' Cij/(CiiCjj) 1/2 
where Cij are the elements of the asymptotic covariance 
matrix C' of equation (34). The correlation coefficient must lie 
between -1.0 and 1.0. Overestimation of one parameter 
implies probable overestimation of the other if two parameters 
are positively correlated. This situation arises when the data 
are especially sensitive to the difference between the two pa- 
rameters. Similarly, if two parameters are negatively corre- 
lated, a positive estimation error for one suggests a negative 
error for the other and that the data are sensitive to their sum. 

Note that a large correlation coefficient does not mean that 
the two variables are more uncertain than they would be if 
uncorrelated. When the prior covariance matrix is diagonal as 
it is here, large correlation coefficients generally occur for the 
well-resolved parameters. 

The largest correlations involve the eastward velocity of 
block C. This parameter has a positive correlation with the 
dislocation rate on CSAN (0.96) and with the eastward veloci- 
ty of blocks E and N (0.94 and 0.79, respectively); it has a 
negative correlation (-0.87) with the northward component 
of block C. Similarly, the eastward velocity of block E is cor- 
related positively with the dislocation rate on CSAN (0.90) 
and the eastward velocity of block N (0.81) but negatively 
with the northward velocity of block C (-0.78). The dis- 
location rate on SSAR is negatively correlated with fault 
width on the same fault (-0.93). Thus if we underestimated 
the fault width, we may have overestimated the dislocation 
rate. However, our estimated dislocation rate for SSAR is al- 
ready quite small. On the BUSH fault the correlation between 
dislocation rate and fault width is 0.81, opposite in sign to that 
for SSAR. The negative dislocation rate on BUSH might be 
caused by our underestimating the fault width. However, the 
fault width is well resolved, indicating that a small fault width 
fits the data much better than a large one. The northward 
velocity for block C and the disclocation rate on CSAN share 
a negative correlation (-0.86). All of the other correlation 
coefficients lie between -0.70 and 0.70, and none reveals any 
particularly fascinating secrets about the parameter estimates. 

6. DISCUSSION 

Virtually all displacements seen in the trilateration data are 
aseismic. Only two significant earthquakes occurred during 
the period of this study, on November 28, 1974, and August 6, 
1979. The 1974 event, known as the "Thanksgiving Day earth- 
quake," occurred on fault segment BUSH. It had a magnitude 
5.2 and caused 150 mm of left-lateral slip on a rectangular 
patch 3 km long and 5 km wide (extending from 5 to 10 km 
depth) according to the dislocation model of Savage et al. 
[1976]. This event might be expected to cause left-lateral sur- 
face displacement on BUSH or apparent right-lateral creep on 
SSAR or CCAL during the period from 1971 to 1983. How- 
ever, the estimated creep rate on BUSH is right lateral for all 
data sets, and there ts no significant difference between the 
estimates from the earlier and later data. We do not believe 

that the 1974 event had any substantial effect on the estimated 
BUSH creep rate, which is not significantly different from zero 
anyway. This earthquake may have caused apparent right- 
lateral creep on CCAL, however. The 1979 Coyote Lake 
earthquake was a magnitude 5.7 event on the northern Cala- 
veras fault, outside of the Hollister network. According to 
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Bouchon [1982] this event caused 150-200 mm of right-lateral 
slip on a 14-km-long fault segment extending from about 1 km 
to about 10 km depth. The effect of this event should be to 
increase the apparent right-lateral creep rate in the more 
recent data sets for the fault NCAL. In fact, a modest increase 
of about 5 mm/yr does occur in the average creep rate for data 
set 83/92 compared with the others. The right-lateral creep on 
NCAL is significantly different from zero, but the change be- 
tween the earlier and later data is not. The theoretical surface 

displacement from the Coyote Lake event would be measur- 
able only at station CND, whose displacement is not well 
determined because there are no stations north of it. Block 

slip on NCAL does exceed its prior estimate by 6 mm/yr 
(Table 3), and seismic and postseismic effects of the Coyote 
Lake event may contribute to this excess. However, their con- 
tributions are unlikely to exceed the estimated uncertainty of 3 
mm/yr. Thus neither the 1974 nor the 1979 event had any 
significant impact on the average slip rates for the period from 
1971 to 1983. 

The relative block motion and the aseismic slip rate along 
the fault system in the Hollister area have also been estimated 
by Savage et al. [1979] and by Thatcher [1979]. Savage et al. 
used the same data set that we call 78/85. Thatcher used 233 
triangulation data, 16 trilateration data, and one astronomic 
datum. His triangulation data cover the interval from 1885 to 
1976. Both Savage et al. and Thatcher approximated the fault 
system by vertical strike-slip fault segments and divided each 
segment into shallow and deep slip zones. The shallow slip 
rates (creep rates) and deep slip rates (block slip rates) ob- 
tained by the former investigators are summarized in Table 5, 
along with our estimates for data set 83/92. We agree moder- 
ately well with Savage et al. but not so well with Thatcher. On 
the northern and central San Andreas we agree with Savage et 
al. on a block slip rate of about 25 mm/yr. Thatcher infers a 
much greater block slip rate, partly because he constrains the 
fault width to 15 km and partly because he used one block slip 
value to represent the combined effects of the San Andreas 
and Calaveras. Thatcher tried other values of fault width, but 
he found that 15 km provided the best fit to the data. He used 
triangulation data spanning a much wider zone (60 km) than 
the trilateration data we used. His data set might be more 
sensitive to the fault width than ours. However, he did not 
report an uncertainty or resolution estimate for fault width. 
On the southern San Andreas we obtain a much smaller creep 
rate than either Savage et al. or Thatcher, but the differences 
are less than two standard deviations. The differences may be 
caused by differences in the assumed range of the southern 
San Andreas fault. Thatcher included data from farther south, 
where the observed creep rate is larger. Savage et al. assumed 
a shallow slip rate rather than estimating it from the geodetic 
data. Our estimate should be appropriate only for latitudes 
north of 36ø40 ', where the trilateration monuments lie. On the 
southern Calaveras fault we obtain a shallower fault depth 
than the others; Savage et al.'s value of 5 km is consistent with 
ours, but Thatcher's assumed value of 15 km does not agree 
with the recent trilateration data. For the central and northern 

Calaveras, all three estimates show the creep rate exceeding 
the block slip, implying a decrease in right-lateral stress (or an 
increase in left-lateral stress). When we used the earlier data 
sets (78/69 and 78/85 in Figure 6), the NCAL creep rate was 
less than or equal to the block slip rate. Thus the apparent 
stress reduction on NCAL may result from the 1979 earth- 
quake. The lack of block slip on the Calaveras in Thatcher's 
model should not cause alarm, as he assigned all of the rela- 

TABLE 5. Comparison With Published Solutions 

Fault 

This 

Work Sava•te et Thatcher 
(83/92) al. [1979] Notes [1979] Notes 

Fault Width, km 
NSAN 9 + 4 5.0 t 15.0 f 

CSAN 11 _+ 4 5.0 t 15.0 f 
SSAN 11 + 5 15.0 f 15.0 f 
SCAL 0 + 1 5.0 f 15.0 f 
CCAL 6 + 5 5.0 f 15.0 f 
NCAL 12 + 5 5.0 f 15.0 f 
NSAR 15 + 8 5.0 t 0.0 f 
SSAR 2 + 3 5.0 t 0.0 f 

BUSH 3 _+ 2 0.0 f 0.0 f 

Creep Rate, mm/yr 

NSAN 0 _+ 0 0.0 f 0.0 
CSAN 11 + 5 8.9 + 1.5 15.5 + 3.0 

SSAN 17 ___ 9 32.0 f 29.7 _+ 1.8 
SCAL -5 + 5 0.0 f 13.0 q- 2.0 
CCAL 19 _+ 10 14.9 +_ 1.8 13.0 ___ 1.6 
NCAL 20 + 4 14.9 q- 1.8 13.0 + 1.6 
NSAR 6 + 4 3.9 + 1.4 0.0 

SSAR -3 ___ 13 3.9 ___ 1.4 0.0 
BUSH 25 + 11 0.0 f 0.0 

Block Slip Rate, mm/yr 

NSAN 26 q- 3 22.2 __+ 3.1 38.0 _+ 3.0 
CSAN 25 +_ 3 22.2 q- 3.1 38.0 +__ 3.0 
SSAN 37 + 2 38.0 f 38.0 q- 3.0 
SCAL 13 + 2 14.4 + 2.2 0.0 

CCAL 13 ___ 10 14.4 q- 2.2 0.0 
NCAL 13 + 3 14.4 + 2.2 0.0 
NSAR 0 q- 2 0.0 f 0.0 
SSAR 2 + 10 0.0 f 0.0 

BUSH 4 q- 10 0.0 f 0.0 

Notes' a, average of values for several fault segments' f, fixed' t, 
determined by trial and error. 

tive block motion to the San Andreas fault, which he con- 
sidered to be the plate boundary. Our value of 38 mm/yr 
relative velocity between blocks E and W is quite consistent 
with Thatcher's 38 mm/yr for the San Andreas-Calaveras 
system. Our results show that the Calaveras is also part of the 
plate boundary, and other faults outside the trilateration net- 
work are presumably part of the plate boundary as well. New 
features of our work not present in the others are (1) the 
variation of fault width from place to place, even on a given 
fault, (2) the ability to distinguish block motion from near- 
surface fault motion and to compare block motion with geo- 
logical estimates, and (3) a method to test the importance of 
minor faults such as NSAR, SSAR, and BUSH, which could 
have been significant, although they have proved to be unim- 
portant. 

Our results clearly show that aseismic deformation is very 
important in plate tectonics. While some of the near-surface 
slip on the northern Calaveras fault may result from the 1979 
earthquake, all of the block motion and most of the near- 
surface motion has been aseismic. Every fault segment except 
NSAR, SSAR, and BUSH is subject to aseismic deformation 
below some depth, which varies with fault segment. Any at- 
tempt to match the rate of seismic moment release to the 
value required by plate tectonics must include the effects of 
this aseismic motion and the varying thickness of the brittle 
zone on each fault. 

By using the Bayesian inversion procedure outlined here, we 
are able to include arbitrarily many fault segments, without 
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regard to the adequacy of the data to resolve all the parame- 
ters. Unresolved parameters cause some increase in the uncer- 
tainty of the other parameters, as they should, but they do not 
cause any problems in the inversion procedure. With this 
method it is theoretically possible to make a very detailed 
map of stress accumulation in a region with many interacting 
faults. The usefulness of such a map depends of course on the 
quantity and quality of the geodetic data that go into it. 

The agreement between the observations and the predic- 
tions of our model does not prove that the model represents 
well the stress accumulation mechanism at plate boundaries. 
It may be possible to fit the data equally well with a model 
involving no faults or blocks at all. For example, viscous flow 
in the asthenosphere might cause tractions at the base of a 
lithosphere with variable thickness, causing a concentration of 
strain rate where the lithosphere is thin. Or the crust itself 
may be viscoelastic, with spatially varying rigidity and vis- 
cosity. One can generalize from our results to infer the proper- 
ties of alternate models. The regions that we call blocks are 
characterized by the absence of significant internal defor- 
mation, so they must be regions of relatively thick crust or 
large viscosity. The "faults" are zones of strain concentration, 
and what we model as fault width is essentially the width of 
such a zone. The relative block velocity would correspond to 
the difference in flow rate across the array, and this is very 
well determined. The variation of some near-surface properties 
in any alternate model must be only weakly resolved, as are 
the fault parameters on some segments in our model. 

The agreement of the inferred block velocities with geologi- 
cally estimated fault slip rates, coupled with the good resolu- 
tion of these parameters, strongly implies a steady pattern of 
flow in the. asthenosphere. A further suggestion, somewhat 
more tenuous because resolution is lacking, is that the shal- 
lower slip rates vary more in time. This notion is clearly con- 
sistent with the fact that earthquakes, which produce episodic 
displacements, are limited to the upper crust in central Cali- 
fornia. Creep in the upper hundred meters or so is also vari- 
able and probably related in some way to earthquakes. An 
important feature just beyond our resolving ability is the tem- 
poral variability of aseismic slip motion at a few kilometers 
depth. We believe it likely that earthquakes are preceded by 
accelerated slip just at the boundaries, especially the lower 
boundaries, of the locked fault surfaces. With a greater density 
of monuments and with more frequent measurements it 
should be possible not only to detect but also to interpret the 
aseismic slip motions that trigger seismic catastrophes. 
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